Hypoxia promotes the phenotypic change of aldehyde dehydrogenase activity of breast cancer stem cells
نویسندگان
چکیده
منابع مشابه
Hypoxia promotes the phenotypic change of aldehyde dehydrogenase activity of breast cancer stem cells
Stable breast cancer cell (BCC) lines are valuable tools for the identification of breast cancer stem cell (BCSC) phenotypes that develop in response to several stimuli as well as for studying the basic mechanisms associated with the initiation and maintenance of BCSCs. However, the characteristics of individual, BCC-derived BCSCs varies and these cells show distinct phenotypes depending on the...
متن کاملNOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells.
High aldehyde dehydrogenase (ALDH) activity is a marker commonly used to isolate stem cells, particularly breast cancer stem cells (CSCs). Here, we determined that ALDH1A1 activity is inhibited by acetylation of lysine 353 (K353) and that acetyltransferase P300/CBP-associated factor (PCAF) and deacetylase sirtuin 2 (SIRT2) are responsible for regulating the acetylation state of ALDH1A1 K353. Ev...
متن کاملAldehyde Dehydrogenase: Cancer and Stem Cells
Aldehyde dehydrogenases (ALDH) belong to the oxidoreductase family, which catalyze the conversion of aldehydes to their corresponding acids. As a group of NAD(P)+-dependent enzymes, aldehyde dehydrogenases (ALDHs) are involved in oxidation of a large number of aldehydes into their weak carboxylic acids (Moreb, et al., 2012). ALDH is found in every subcellular region such as cytosol, endoplasmic...
متن کاملAldehyde dehydrogenase activity promotes survival of human muscle precursor cells
Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their ...
متن کاملHypoxia Preconditioning Promotes Survival And Clonogenic Capacity Of Human Umbilical Cord Blood Mesenchymal Stem Cells
Background: In recent decade, human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) provide enormous potential for appropriate cell therapy, but they have limited growth potential and cease to proliferate due to cellular senescence, so providing a strategy for increasing the stem cell survival is necessary. Methods: In this investigation, MSCs characterized by flow cytome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cancer Science
سال: 2017
ISSN: 1347-9032
DOI: 10.1111/cas.13147